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INTRODUCTION

Work is currently in progress to obtain temperature distributions of dust in the most infrared-luminous

galaxies. The results presented herein are of a preliminary nature, representing a zeroth-order approximation
(see WORK YET TO liE DONE, below). The objects which have been analyzed so far are all galaxies

from the IRAS Bright Galaxy Sample with infrared luminosities LtR >__10 tl Lo (see Carico et al., 1988).

They are: Arp 220, Mrk 231, Mrk 273, NGC 1614, NGC 3690, NGC 628516, and Zw 049.057. The

analysis utilized 3.7 #m data from the Palomar 5 m Hale telescope, IRAS data at 12, 25, 60, and 100 pro,
and 1 mm continuum data from the CalTech Submillimeter Observatory on Mauna Kea.

METHOD

A cloud of N spherical dust grains at a distance d from the observer produces an observed flux density

at a wavelength A given by

fv(A) = _rB.(A, T) Qab,(A) _ dT, (1)

where a is the radius of the dust grains, Qab,(._) is the absorption efficiency of the dust grain material,

and B_(A, T) is the Planck function, ff a mean mass density is adopted for the grain material (a value of

3 gcm -3 was used to obtain the accompanying results), N can be rewritten in terms of the total mass of

dust, M, and cqn. (1) can be put in the form

C Q_b,(A) 1 /.oo 1 dM dT (2)fu(A)
a A3J0 e_-I dT '

where C is a constant for a given emission source, depending only on the mean mass density of the grain

material and the distance to the source. For A >> a, the quantity Q_b, (A)/a is independent of a (see, e.g.,

Hildebrand, 1983); thus, for infrared emission from spherical interstellar dust grains, the observed flux

density does not depend on the size of the grains.

In numerical form, eqn. (2) becomes

f.(Ai)=c Q_b,(Ai) 1 _ I (dM'_ dT).a A3i " e_,_k_ - 1 \dT,Ij

Using logarithmic intervals for A and T, so that Ai = ),o x i, T: = To yJ, and dTj = Tj - Tj-t = Tj(1 - _),

where x, y, Ao, and To are constants, and defining

1)
fi = "CQabs(Ai) (1 - Y fv(Ai)

I(, s = [x'(e'rSee; -1)]-'
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one obtains

f_ = E Kij gj (3)
J

which must be solved for the gj.

For the analysis presented here, eqn. (3) was solved using a modified version of the least-squares

computer program described by Pajot et al. (1986) (which was generously provided by J. L. Puget when

this author's own program failed to cooperate for as yet unknown reasons - my sincerest thanks!). A
wavelength range from 3.7 prn to 1000 lain was used for all objects. The results are shown in the
accompanying figures.

RESULTS

The results for three representative galaxies are shown in Figures 1 and 2. In each plot, three curves
have been drawn, representing results for three different emissivity laws:

Qab_ oc A-l: solid line

Qabs oc A-15: dotted line

Qabo oc A-2: dot - dashed line

where Qa_, is the absorption efficiency, normalized to Qab,(100 lam)/a = 133.3 cm -1, and a is the
effective grain size.

Figure 1 shows the mass of dust (in units of M o = 2 x 1033 gm) per logarithmic temperature interval.
The total mass is thus the area under the curve shown.

In Figure 2 is shown the fraction of the total luminosity emitted by dust at a temperature T (in the top

half of each plot), and the fraction of the luminosity which is being emitted by dust which is at temperatures
> T. These plots tend to bring out the differences between the galaxies much more clearly than the mass

distribution plots of Figure 1, clue to the extreme temperature dependence of the luminosity (L c_ T _#, for
Qabs c_ A-B). In particular, one can compare the very sharply peaked distribution for Arp 220, centered at

50 K, and falling to 5% of the luminosity at temperatures _ 25 K and _ 100 K, with the broad distribution

for Mrk 231, which peaks at roughly 150 K and fails to 5% of the luminosity for temperatures _ 40 K

and _ 350 K. This difference can also be seen in the bottom plots where, for Arp 220, _ 10% of the

luminosity is being emitted by dust with temperatures > 100 K, whereas for Mrk 231, the contribution to
the luminosity from T > 100 K dust is ,-, 60%.

Figure 2 also indicates how uncertain estimates of the mass of cold dust can be. For the case of

Mrk 231, Figure 2 suggests that more than 90% of the luminosity is being emitted by dust at temperatures
50 K. However, from Figure 1 it is seen that most of the estimated dust mass for Mrk 231 is at

temperatures _ 50 K. Hence, significant changes in the total mass of dust would not necessarily be
reflected in the energy distribution.

WORK YET TO BE DONE

As mentioned previously, the work presented here is preliminary, intended to obtain a qualitative feel

for the analysis and the results that can be obtained. The main simplifications which have gone into this
analysis, and which will be addressed in subsequent work, are as follows:

I. The dust was assumed to be everywhere optically thin to infrared radiation. This is almost certainly
not the case, particularly for the compact central regions of such galaxies as Arp 220 and Mrk 231.

2. The 1 - 3 /am data has not yet been utilized, due to the complexities of accurately accounting for

contamination from stellar emission. These wavelengths will clearly be important in understanding
the hottest dust, particularly for temperatures in excess of 1000 K.

3. The conlribution to the emission from very small grains, presumably PAHs (polycyclic aromatic
hydrocarbons), has not been addressed, and may be significant in some sources.
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Figure 1: The mass of interstellar dust as a function of temperature for three infrared-luminous galaxies. The
different curves on each plot are discussed in the text.
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